Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord.
نویسندگان
چکیده
Anisotropy of water diffusion in axon tracts, as determined by diffusion-weighted MRI, has been assumed to reflect the restriction of water diffusion across axon membranes. Reduction in this anisotropy has been interpreted as degeneration of axons. These interpretations are based primarily on a priori reasoning that has had little empirical validation. We used the experimental advantages of the sea lamprey spinal cord, which contains several very large axons, to determine whether intraaxonal diffusion is isotropic and whether anisotropy is attributable to restriction of water mobility by axon surface membranes. Through the application of magnetic resonance microimaging, we were able to measure the purely intraaxonal diffusion characteristics of the giant reticulospinal axons (20-40 microm in diameter). The intraaxonal apparent diffusion coefficients of water parallel (longitudinal ADC, l-ADC) and perpendicular (transverse ADC, t-ADC) to the long axis were 0.98 +/- 0.06 (10(-3) mm2 sec) and 0.97 +/- 0.11 (10(-3) mm2 sec), respectively. In white matter regions that included multiple axons, l-ADCs were almost identical regardless of axon density in the sampled axon tract. By comparison, t-ADCs were reduced and varied inversely with the number of axons (and thus axolemmas) in a fixed cross-sectional area. Thus, diffusion was found to be isotropic when measured entirely within a single axon and anisotropic when measured in regions that included multiple axons. These findings support the hypothesis that the cell membrane is the primary source of diffusion anisotropy in fiber tracts of the central nervous system.
منابع مشابه
Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo.
Knowledge of water diffusion characteristics within the human spinal cord may provide important information about the structural nature of spinal cord pathology. However, the sensitivity of diffusion imaging methods to motion and the requirement for high in-plane resolution has hitherto restricted study of spinal cord diffusion to excised samples. The first diffusion images of the human cervica...
متن کاملStructural changes in glutamate cell swelling followed by multiparametric q-space diffusion MR of excised rat spinal cord.
Diffusion in the extracellular and intracellular spaces (ECS and ICS, respectively) was evaluated in excised spinal cords, before and after cell swelling induced by glutamate, by high b-value q-space diffusion MR of specific markers and water. The signal decays of deuterated tetramethylammonium (TMA-d(12)) chloride, an exogenous marker of the ECS, and N-acetyl aspartate (NAA), an endogenous mar...
متن کاملDiffusion Imaging in the Rat Cervical Spinal Cord
Magnetic resonance imaging (MRI) is the state of the art approach for assessing the status of the spinal cord noninvasively, and can be used as a diagnostic and prognostic tool in cases of disease or injury. Diffusion weighted imaging (DWI), is sensitive to the thermal motion of water molecules and allows for inferences of tissue microstructure. This report describes a protocol to acquire and a...
متن کاملIn vivo diffusion tensor imaging of rat spinal cord at 7 T.
In vivo diffusion tensor imaging of normal rat spinal cord was performed using a multi-segmented, blipped EPI sequence at 7 T field strength. At high diffusion weighting, the signal exhibited a non-monoexponential decay that was fitted to a biexponential function, associated with the fast and slow components of diffusion in the cord tissue, using a nonlinear regression analysis along with a con...
متن کاملMagnetic resonance microimaging of the spinal cord in the SOD1 mouse model of amyotrophic lateral sclerosis detects motor nerve root degeneration
Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. Current imaging studies have concentrated on areas of the brain and spinal cord that contain mixed populations of sensory and motor neurons. In this study, ex vivo magnetic resonance microimaging (MRM) was used to separate motor and sensory components by visualizing individual dorsal and ventral roo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 25 شماره
صفحات -
تاریخ انتشار 2002